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Using Network Motif Analysis to Explore Transcriptional Regulatory Systems 
 

Biological processes are the products of highly complex and dynamical systems. As the 

molecular characterization of cellular activity has moved to the systems level, the various 

interactions between proteins, DNA, between genes have come to be appreciated within 

networks with intricate circuitry describing relationships between gene expression and the cell 

environment1. Recent study has suggested that these biological networks contain a small set of 

recurring regulation patterns, termed network motifs, which occur far more often than would be 

predicted by chance. These patterns are present in the regulatory networks of organisms ranging 

from simple microorganisms to plants and animals1,2.  

In the networks governing transcriptional regulation, transcription factors respond to 

biological signals and accordingly modulate the transcription rates of genes, enabling cells to 

make the proteins they need at the appropriate times and amounts. Embedded within these 

networks are motifs which help to carry out specific information-processing functions1.  In this 

review, we will consider the detection and representation of network motifs as well as their 

applications in the analysis of transcriptional regulatory systems. We will start by discussing 

basic properties of network motifs, and present different techniques to detect them in 

transcriptional networks. The important issue of visualization and representation of network 

motifs will also be considered and discussed. Finally, we will also discuss some applications of 

network motif analysis in more dynamic contexts, such as network motif behavior and network 

motifs vis-a-vis evolution.  



Examples of Network Motifs 

Before the detection and analysis of network motifs is discussed, it is useful to consider 

some examples of biological network motifs. As would be expected, the network motifs found in 

eukaryotic cells are much more diverse and complex than the network motifs found in 

prokaryotic cells. In this section, 4 common network motifs found in the transcriptional 

regulation network of E. coli will be presented.  

 Autoregulation 

The autoregulation motif is the simplest possible motif in a regulatory network (Fig 1). In 

this motif, a particular species up- or down-regulates its own expression and/or activity. In 

negative autoregulation, a transcription factor represses its own promoter. In positive 

autoregulation, a transcription factor activates its own promoter. Negative autoregulation 

accelerates the response time (time necessary to reach ½ steady state concentration), while 

positive autoregulation slows the response time1,3.  

Feedforward Loops (FFLs) 

In the feedforward loop network motif, a general transcription factor X regulates the 

transcription of a second transcription factor Y, with both X and Y together regulating the 

expression of a structural gene Z. Feedforward loops may be further subdivided into coherent 

and incoherent feedforward loops (Fig 2). In coherent feedforward loops, the direct of effect of 

the general transcription factor has the same sign as the net indirect effect via the specific 

transcription factor. By contrast, in incoherent feedforward loops, the direct and indirect effects 

have different signs4. The coherent FFL regulatory motif has been shown to result in sensitivity 

to changes in regulator concentration in one direction (ie OFF to ON), and insensitivity to 

concentration changes in the opposite direction (ie ON to OFF). This type of network 



functioning may confer a survival advantage in the context of a rapidly changing environment. 

By contrast, the incoherent FFL has been shown to result in increased response time of gene 

expression following stimulus steps4,5.   

Single Input Modules (SIMs) 

In the single input module network motif, a single transcription factor may control the 

expression of a number of different structural genes. Single Input Module motifs are useful for 

controlling the timing of gene expression, with the temporal activation pattern resulting from the 

different activation thresholds of the various structural genes of interest (Fig 3). Kalir et. al 

demonstrate that a single input module motif is responsible for the exact timing in the assembly 

of flagella in E. coli. This network motif enables a remarkably detailed temporal program of 

transcription associated with various multiple steps of flagella assembly6.  

Dense Overlapping Regulons 

The dense overlapping regulon network motif is akin to a “multiple input, multiple 

output” module. In this motif, a layer of overlapping interactions between operons and a group of 

transcription factors enables different inputs to regulate many different outputs. The stress 

response system of E. coli encodes a dense overlapping regulon motif1 (Fig 4).  

 

Detecting Network Motifs 

The detection of network motifs in a biological network generally consists of three tasks, 

all of which require substantial computational power. Firstly one must find which subgraphs 

occur in the input network and in what number. Second, one must determine of which these 

subgraphs are topologically equivalent (i.e isomorphic) and group them accordingly into 



subgraph classes. Finally, one must determine which subgraphs are displayed at much higher 

frequencies than in random graphs (under a specified random graph model)7,8. 

Tools Currently Available 

Most existing algorithms for detecting network motifs function by enumerating all of the 

possible subgraphs with a particular number of network nodes. Unfortunately, the processing 

power and time required for such algorithms increases substantially as the network size 

increases6,7. An algorithm that rapidly samples subgraphs to more efficiently detect network 

motifs has been proposed by Kashtan et. al.  This algorithm, named MFINDER, is based on a 

random sampling of specific subgraphs, and is thus capable of detecting network motifs with 

only a small number of samples. Effectively, the runtime of this algorithm is thus asymptotically 

independent of the network size. The effectiveness of this algorithm has been demonstrated in a 

wide variety of biological networks, including E.coli and yeast transcriptional networks, as well 

as C. elegans neuronal networks9.  

However, Wernicke et. al have demonstrated that the algorithm proposed by Kashtan et. 

al suffers from sampling bias and is only efficient when the network motifs are small. When 

subgraphs become large, the algorithm slows tremendously. To address these issues, a new 

improved detection tool, named FANMOD, based on the previous algorithm was developed (Fig 

5). Unlike the algorithm of Kashtan et. al, FANMOD enumerates all subgraphs for a network of 

a given size, but then groups them into isomorphic subgraph classes, and then determines the 

frequency of these subgraph classes in a randomization of graphs whose number is specified by 

the user. The overall result of this approach is an algorithm which is more thorough (no sampling 

bias, unique capability to handle different kinds of interactions, ie protein-gene) and faster 



(runtime 10s vs. 620s for MFINDER to enumerate 5-node subgraph in E. coli transcriptional 

network 7,8 

 

Representing Network Motifs in Network Images 

Once motif families have been identified to describe the biological network of interest, 

obtaining a proper image of the network is crucial to the appreciation of global network structure 

and to further analyses of the network. However, the tremendous size and complex nature of the 

data sets acquired from network motif analyses can make representation and visualization a 

challenge. 

 Milo et. al achieve a compact representation of the E. coli transcriptional network using 

symbols to represent particular network motif structures. These symbols are then arranged in a 2-

dimensional space, with nodes representing operons and lines representing transcriptional 

regulation10 (Fig 6). However, a major problem with this method of representation is the sheer 

visual complexity of the network image; it is difficult to appreciate network connections and 

motifs from such a diagram. Alternative approaches suggest simplification of subgraphs 

depictions, but these can result in the loss of network information11. 

Huang et. al describe an alternative approach to network visualization that purports to 

address these issues.  A “parallel plane layout” with the same symbology as before is proposed, 

with the various motifs identified in a network separated onto different plane layers in 3 

dimensional space. Each plane represents a particular motif type. Each individual motif is placed 

into a cluster sphere, which is transparent to allow the viewer to see edges between motifs and 

the attendant relationships between them (Fig 7). Relative to the method used by Milo et. al, this 



method provides an optimal amount of information whilst overcoming excessive complexity by 

separating the representation into planes in 3-dimensional space11.  

 

Exploring Dynamic Network Motif Behavior- SANDY  

To this point, we have considered only the application of network motif analysis to static 

transcriptional regulatory networks. Approaching networks from a dynamic perspective spawns a 

number of interesting questions. If network motifs are thought carry out specific information 

processing functions, how might network architecture vary in response to different 

environmental stimuli?  Can networks “rewire” their architecture? Luscombe et. al have 

pioneered a novel, effective approach to examining the dynamical behavior of a biological 

network. Specifically, they employ an approach termed Statistical Analysis of Network 

Dynamics (SANDY), which was capable of uncovering large changes in the underlying 

transcriptional network architecture of S. cerevisiae12. The SANDY technique is based on a 

previously described software tool named TopNet, which is used to correlate protein properties 

with topological statistics. Given an arbitrary undirected network and group of node classes as 

inputs, TopNet can compute important topological statistics, create sub-networks and draw 

power-law degree distributions for each sub-network13. SANDY begins by examining global 

characteristics that quantify network architecture, such as network size (i.e. number of 

transcription factors) and topological measures (In-degree, Out-degree, etc.). Importantly, 

SANDY also calculates the occurrence of specific network motifs, such as FFLs and DORs, 

within the network (Fig 8). Once these global measures are quantified, the condition-dependency 

of the network architectures is then examined. This analysis technique enabled the authors of this 

study to make a number of striking findings. Specifically, it was found that in response to 



different stimuli, many transcription factors in the S. cerevisiae genome rewired the 

transcriptional network by altering their interactions with other network components to varying 

degrees. The SANDY approach is limited by existing datasets, which provide only gene 

expression data. As interaction data becomes more available, it will become possible to see how 

network topologies change when condition-specific interactions are integrated as well12. The 

authors anticipate that their findings will remain valid since their observations were robust to 

large perturbations in the system (perturbing static network by 30% through random addition, 

deletion and replacement of interactions). However, these claims are ultimately unfounded since 

purely stochastic perturbation of nodes in the network very conceivably may overlook crucial 

interactions and subgraphs in the network10.   

 

Understanding Network Motifs and Evolution  

As we begin to understand how network motifs behave dynamically in biological 

systems, we can then ask how the genetic circuits that we observe evolved in the first place. It is 

well known that genes evolve most often by conservative evolution, wherein genes with similar 

functions originate from a common ancestor gene1.  However, it does not seem likely that 

network motifs evolved in a similar fashion. Completely unrelated transcription factors can 

regulate similar output genes in different organisms. Consider two homologous genes in two 

organisms that are both regulated by SIMs in response to similar environmental cues. If the two 

SIMs had a common-ancestor SIM, the regulators in these systems would similarly be 

homologous. However, the sequences of the regulators can sometimes be so different that they 

are classified into different transcription factor families. Rather, independent convergent 

evolution on the same regulation circuit appears to present the most likely explanation1,14,15. 



Directly consistent with this hypothesis, Conant et. al present evidence that multiple types 

of transcriptional regulation circuitry in E. coli and S. cerevisiae  have evolved independently 

and not through the duplication of ancestral circuits14. They consider 2 circuit classes in E. coli 

and 6 circuit classes in S. Cerevisiae. Since their approach requires uniform network topologies, 

they are not able to analyze the network for the dense-overlapping regulon. Moreover, they 

consider only regulatory genes and not downstream targets. Central to this study of circuit 

duplication is the study of gene duplication.  Remarkably the authors use a relatively 

unsophisticated method to identify duplicate genes. They use a gapped BLAST with a threshold 

value of Ecritical<10^-5.  However, this liberal approach to identifying gene duplicates can lead 

only to the detection of even more duplicate circuits. Thus, the fact that their hypothesis of 

independent circuit evolution is affirmed in the presence of this bias lends even further support to 

their findings. However, the lack of inclusion of the dense-overlapping regulon motif in their 

analysis raises concern about validity of the E. coli findings, since the DOR was previously 

shown to be one of 3 representative network motifs in the E. coli transcriptional regulatory 

network10.  

Moreover, it has been suggested that even closely related organisms frequently have 

different network motifs. To prove this hypothesis, it was first established that orthologous 

transcription factors and transcription factors generally share the same regulatory interaction if 

the sequences of the regulators are sufficiently similar`15,16. The term “regulog” was coined to 

describe orthologous regulators with sequence identity generally greater than 30-60%, depending 

on protein family.  This “regulog” concept is useful as a prediction tool, as regulatory 

interactions may be transferred between organisms so long as orthologous transcription factors 

and ortholgous target genes exist15, 16,. 



Applying the regulog principle in examining 1293 interactions in E. coli and a closely 

related pathogenic proteobacterium P.aeruginosa,  Babu et. al find that whereas the conservation 

of genes and gene interactions is related to the phylogenetic distance between organisms, the 

conservation is of network motifs is not. Moreover, they also find that regulatory interactions in 

motifs were lost at the same rate as other interactions in the transcriptional network. These 

findings suggest that transcriptional regulatory networks evolve in an incremental fashion, with 

the loss and gain of individual interactions being more important than the loss and gain of whole 

motifs16. 

On a larger scale, Ihmels et. al demonstrate that the use of motifs within organisms can 

also evolve over time. Examining the transcriptional network of S. cerevisiae, they describe a 

large-scale modulation of the yeast transcription program connected to the emergence of the 

capacity for rapid anaerobic growth17. Specifically, they find that while genes coding for 

mitochondrial and cytoplasmic ribosome proteins display a strongly correlated expression pattern 

in the aerobic fungus C. albicans, this correlation is lost in the fermentative S. cerevisiae 

following an apparent genome duplication event. They then demonstrate that this change in gene 

expression is connected to the loss of a particular cis-regulatory element from dozens of genes17. 

While this study does not provide any direct analysis as to how particular network motifs are 

reorganized, it nonetheless opens a number of interesting questions for future investigation along 

these lines. That is, if a transcriptional regulatory network can be changed on such a large scale, 

what are the attendant consequences of the change on the network motifs within the network? 

Which motifs are conserved in such contexts? Are motifs re-arranged in specific patterns? 

Indeed, viewing networks through an evolutionary lens may uncover the presence of 

“evolutionary meta-motifs.” Such motifs could be used to describe patterns in overall network 



evolution. The development of more sophisticated high-throughput gene expression and 

interaction tools as well as network analysis approaches should enable these questions to be 

answered in the near future.     

 

Conclusion 

Network motif analysis has revolutionized the study of transcriptional regulation in 

organisms of all types. In this review, we have discussed various approaches to detecting and 

representing network motifs, as well as their limitations. Moreover, we have also considered 

methods in which network motifs are analyzed in the context of a larger biological process, such 

as information processing or evolution. In both cases, we find that that applying network motif 

analysis enables more incisive and potent insights into biological processes that would have 

never been made with traditional binary experimental approaches. However, there remains much 

yet to be studied.  How network motif function is influenced by its context within the 

surrounding networks is an important area that has not been well investigated. This is in part due 

to the fact that in the simple systems currently being studied, individual motif behavior does not 

appear to be influenced by other cellular networks1. Thus, as technologies and capabilities for 

systems-level scientific approaches grow, it will be important to apply the same network motif 

analysis to more complex higher order eukaryotic organisms, including humans.  
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Figure 1: Autoregulatory Feedback Loops (from Alon 2007): a.) In simple regulation, 
transcription factor Y is activated by a signal Sy. When active, it binds the promoter of gene X to 
enhance or inhibit its transcription rate. b.) In negative autoregulation (NAR), X is a 
transcription factor that represses its own promoter. c.) In positive autoregulation (PAR), X 
activates its own promoter. 
 
 
 
 
 
 
 
 
 

 
Figure 2: Coherent and Incoherent feedforward loops (from Alon 2007): The eight types 
of feedforward loops (FFLs) are shown. In coherent FFLs, the sign of the direct path from 
transcription factor X to output Z is the same as the overall sign of the indirect path through 
transcription factor Y. Incoherent FFLs have opposite signs for the two paths. 
 
 
 



 
 
Figure 3: Single Input Modules (from Alon 2007): a.) The single-input module (SIM) 
network motif, and an example from the arginine-biosynthesis system. b.) Temporal order of 
expression in a SIM. As the activity of the master regulator X changes in time, it crosses the 
different activation threshold of the genes in the SIM at different times, generating a temporal 
order of expression. 
 
 
 
 
 
 

 
 
Figure 4: The dense overlapping regulon (DOR) network motif (from Alon 2007): In this 
motif, many inputs regulate many outputs (top panel). The bottom panel shows an example from 
the stress-response system of Escherichia coli. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Using FANMOD (from Werincke 2006). Detecting size-4 network motifs with 
colored edges in the transcriptional network of E. Coli using the FANMOD interface (left). Via 
an export filter (middle), the obtained results can be exported to HTML (right). 
 
 



 
 
Figure 6 (From Milo 2002): Network image of the transcriptional network of E. coli as 
presented by Milo et. al.  
 

 
 
 
 
 



 
 
 
Figure 7 (From Huang 2005): Network image of the transcriptional network of E. coli as 
presented by Huang et. al. Top panel demonstrates the principle of layering of nodes. Bottom 
panel shows how the transparent spheres highlight the motifs while still showing their structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
Figure 8 (From Luscombe 2003) : Standard topological statistics generated by SANDY for the 
transcriptional network of S. cerevisiae. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


